

european cement research academy

Optimization of a sour compression unit for CO₂ purification applied to flue gases coming from oxy-combustion cement industries

Sinda LARIBI*, Nicolas MEUNIER, Lionel DUBOIS, Guy DE WEIRELD and Diane THOMAS

Chemical & Biochemical Process Engineering and Thermodynamics Unit, Faculty of Engineering, University of Mons,

20 Place du Parc, 7000 Mons, Belgium

*diane.thomas@umons.ac.be

Purpose of the study: Optimization of the CPU applied to oxyfuel cement plants thanks to Aspen PlusTM simulations

 \succ Interactions between HNO₂ (and NO₂⁻) and hydrogen sulfite (HSO₃⁻) considered because they are influent under acidic conditions for pH<5. \succ The important intermediate NSS (NOSO₃ –) is formed. \geq NSS may react to form either N₂O and H₂SO₄ directly or complex nitrogen-sulphur compounds, e.g., HADS (HNO(SO₃)₂²⁻) and HAMS (HNOHSO₃⁻). \succ Competition between N₂O formation/HADS and HAMS formation at pH=2. \rightarrow So in our case, in the intermediary conditions for $1 \le pH \le 4$, a competition between three reactions were observed: production of N₂O, production of HADS and acidic hydrolysis of HADS.

CO ₂ -	Without SOx/NOx interactions With all the SOx/NOx interactions	► $CO_2 + 2 H_2O \rightleftharpoons HCO_3^- + H_3O^+$ HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-}
	N-S complexes ionic species	N-S complexes molecular species
	Nitrososulfonate	Nitrososulfonic acid
	ONSO ₃ - alias NSS	ONSO ₃ H alias NSSH
	Hydroxylamine N,N-disulfonate	Hydroxylamine N,N-disulfonic acid
	HON(SO ₃) ₂ ^{2–} alias HADS	$HON(SO_3H)_2$ alias HADSH
	Hydroxylamine N-sulfonate	Hydroxylamine N-sulfonic acid
	HONHSO ₃ ⁻ alias HAMS	HONHSO ₃ H alias HAMSH

Further studies: parametric study for

the optimization of the SCU:

Variation of :

Recirculation rate

Water flowrate

- Operational pressures
- \succ SO_x & NO_x initial concentrations

Energetic and economic optimizations \rightarrow One column process with the same absorption performances

CONCLUSION AND PERSPECTIVES

✓ SCU Chemical mechanism completed considering SOx/NOx interactions under 1 ≤pH≤ 4

- ✓ New chemical mechanism implemented in Aspen Plus[™]
- ✓ Interest of considering interaction reactions proved

JNONS

Université de Mons

> Further results will include an optimization of the financial, energetical and environmental costs of the global process applied in the cement industry -> Parametric study & One column process with the same absorption performances.

The authors acknowledge the European Cement Research Academy (ECRA) and HeidelbergCement for the technical and financial supports accorded to the ECRA Academic Chair.

AKNOWLEDGEMENTS