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SOx emissions

Post-Combustion Capture

Yeo,= 20 to 30 %

- End of pipe technology
where the CO, in the flue
gas is captured at the
outlet of the industrial

process.
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SOLUTION:
CO, Capture

INNOVATION FOR THE CEMENT INDUSTRY !

Oxyfuel Combustion Capture 70%<Yg; ,: <90%
- Combustion with only oxygen : utilization of an Air Separation Unit (ASU)
—> High purity level of CO, at the outlet of the process

30 %<Y5,<70 %

Partial Oxyfuel Combustion Capture

ECRA Chair at UMONS :
CO, Capture > CO, Purification - CO, re-Use
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1) Sour Compression Unit (SCU): the CO, is
compressed and separated from its NOx and SOx
components.
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2) Dehydration unit : Temperature Swing Absorption (TSA) dual-bed where
water is absorbed at high pressure (30 bar) onto a solid adsorbent which can
be silica gel, activated alumina or molecular sieve alumina.

3) Cryogenic unit: it fixes the CO, purity of the final product and the CO, recovery of the overall process. The gas coming from the dehydration unit is cooled
and flashed in a first flash at 30 bar. The vapor stream is then cooled and flashed anew in a second flash with a lowest temperature of -55°C to avoid the
formation of dry ice (solid CO,) at this pressure. Liquid streams from both flashes are mixed and compressed to 110 bar for transport or storage.

Detailed flowsheet of the SCU:
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Modelling characteristics:
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Optimization of the SCU chemical mechanism:

Final selection of SOx/NOXx interaction reactions to integrate in Aspen Plus

Simulation of the process with the

v
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»pH influence: Reactions selected for 1<pH<4

Gas
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Liquid

» SO,+ 2 H,0 = Hy0"+ HSO; — HSO; + H,0 = H,0" + 50,

* SO;+2 H,0 = H;0*+HSQ, —* HSO, +H,0 = H;0*+50,*

H,S0, + H,0 = H,0*+HSO,

2 HNO - N,0+H,0

A
ONSO; + H,0 > HNO + HSO,;
ONSO;H +H,0 = ONSO; + H,0°

+ H,0 =2 HNO,

1.

absorption chemical mechanism:

» The important intermediate NSS (NOSO, -) is formed.

and acidic hydrolysis of HADS.

Literature sources indicate that SOx/NOx interactions influence is essential into the

» New reactions are chosen considering the reactivity strong dependence on pH.
» Interactions between HNO, (and NO,") and hydrogen sulfite (HSO;") considered
because they are influent under acidic conditions for pH<5.

» NSS may react to form either N,O and H,SO, directly or complex nitrogen-sulphur
compounds, e.g., HADS (HNO(SO;),?") and HAMS (HNOHSO, 7).
» Competition between N,O formation/HADS and HAMS formation at pH=2.
—2So in our case, in the intermediary conditions for 1 < pH < 4, a competition
between three reactions were observed: production of N,O, production of HADS
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HNO, + H,0= NO; + H,0*

> N,O, +H,0 = HNO, + HNO, — 3 HNO,>H,0 + 2 NO+HNO;

Co,
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With all the SOx/NOx interactions

»CO,+2 H,0 = HCO, +H,0*
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HCOy + H,0 = H,0" + CO42
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new chemical mechanism:

S02

Without interactions

NOX

With interactions

» Interactions effect: SO, abatement rate/1

> ~Same NOx abatement rate with and without
interactions.

Further studies: parametric study for

N-S complexes ionic species

Nitrososulfonate

N-S complexes molecular species

Nitrososulfonic acid

ONSO," alias NSS

ONSO.H alias NSSH

Hydroxylamine N,N-disulfonate

Hydroxylamine N,N-disulfonic acid

HON(SO,), 2~ alias HADS

HON(SO,H), alias HADSH

Hydroxylamine N-sulfonate

Hydroxylamine N-sulfonic acid

HONHSO,~ alias HAMS

HONHSO,H alias HAMSH

v' SCU Chemical mechanism completed considering SOx/NOx interactions under 1 <pH< 4

v' New chemical mechanism implemented in Aspen Plus™
v' Interest of considering interaction reactions proved

the optimization of the SCU:

Variation of :

» Recirculation rate

» Water flowrate

» Operational pressures
» SO, & NO, initial concentrations

' Energetic and economic optimizations - One column |

process with the same absorption performances

______________________________________________________________________________________________________________

> Further results will include an optimization of the financial, energetical and environmental costs of the global process applied in the cement industry—=> Parametric study & One column process with the same absorption performances.
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